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A reciprocity theorem for the scattering matrix for the propagation of acoustic modes in
a duct with acoustically hard walls or with acoustically absorbing walls has been given in
a companion publication. It was found that for a source at a speci"ed end of the duct,
suitably scaled re#ection matrices in direct and reverse #ow have a reciprocal relationship.
Scaled transmission matrices obtained for direct #ow and reversed #ow with simultaneous
switching of source location from one end to the other also have a reciprocal relationship.
A reverse #ow theorem for the equivalent one-dimensional propagation model, which is
a good approximation to the three-dimensional model at low frequencies, was also obtained.
In this case, using reciprocity and acoustic power conservation arguments it is additionally
found that the acoustic power transmission coe$cient is the same for a source at either end
of the duct for a given #ow direction. This result leads to an invariance theorem which
relates acoustic power propagated due to sources of equal pressure amplitude at the two
ends of the duct. A numerical veri"cation of these reciprocal relationships is given here for
propagation in axially symmetric (circular and annular) ducts with multi-modal
propagation and at low frequencies when a one-dimensional model is appropriate.

( 2001 Academic Press
1. INTRODUCTION

In a companion paper [1], a reverse #ow reciprocity theorem has been developed for
acoustic propagation in non-uniform ducts carrying compressible mean #ow. In the general
case of multi-mode propagation, reciprocity relations for scattering coe$cients are shown
for ducts with either rigid walls or with walls which include a normally reacting, dissipative
section. For a source at one end of the duct, scaled re#ection matrices in direct and reverse
#ow have a reciprocal relationship. Scaled transmission matrices obtained for direct #ow
and reversed #ow with simultaneous switching of source location from one end to the other
also have a reciprocal relationship. Reciprocity is also shown for the long wavelength
approximation when a one-dimensional model is applicable. In this case, acoustic treatment
is not part of the model. Results similar to the multi-modal case are established for
reciprocal relationships for re#ection and transmission coe$cients. Additional results
which are part of a general power transmission invariance principal are also found as
a result of reciprocity and energy conservation. This invariance principal contains as
a special case a result found by Davis [2].

The reverse #ow reciprocity theorem is developed directly from an integral relationship
based on the acoustic "eld equations, using an approach similar to that used in reference [3]
in the case of propagation in a non-uniform duct in the absence of #ow. In particular, the
0022-460X/01/360097#17 $35.00/0 ( 2001 Academic Press



Figure 1. An x, r slice of a non-uniform duct showing acoustic treatment, uniform extensions, acoustic modal
amplitudes, and relevant surfaces and surface normals.
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development does not begin with an energy principle. This is in distinction to the approach
of Moehring [4, 5]. The major complication which arises in the present formulation is the
case when a portion of the duct wall is acoustically treated with a normally reacting
dissipative lining. The boundary condition of Myers [6] is manipulated, using identities of
vector calculus suggested by Moehring [5], to make it possible to establish reciprocity in
this case.

The reverse #ow reciprocity theorem is developed in detail in reference [1] and the results
are brie#y summarized here. Figure 1 shows a non-uniform duct section bounded on either
end by uniform sections (long enough to have essentially uniform #ow so that acoustic
propagation can be synthesized in terms of duct modes). At the two ends of the duct, the
acoustic "eld is the superposition of modes propagating to the right and to the left
(including cut-o! modes which technically do not propagate, but which can be segregated
into right and left modes). Amplitudes a`

n
and a~

n
refer to right and left modes at the end

x"0 and b`
n

and b~
n

refer to right and left modes at x"¸. a`, a~, b`, b~, are vectors of
modal amplitudes. These modal amplitudes are related by the scattering matrix [S]
according to

G
a~

b`H"[S] G
a`

b~H . (1)

The scattering matrix is de"ned as

[S]"C
[R] [¹I ]
[¹] [RI ]D . (2)

Contained in [S] are the usual re#ection matrix [R] and transmission matrix [¹] for
acoustic modes incident at x"0 and re#ection and transmission matrices [RI ] and [¹I ] for
modes incident at x"¸. In multi-modal propagation, the scattering matrix relates all
modes which are considered. In the case of one-dimensional propagation (the long
wavelength approximation), the scattering matrix relates only two modal amplitudes at
each end. The re#ection and transmission matrices are scalars, de"ned as re#ection and
transmission coe$cients.

In the context of reversed #ow reciprocity, there is a scattering matrix [S
1
] for nominal

mean #ow and a second one [S
2
] for reversed #ow. It is the relationship between [S

1
] and

[S
2
] which is considered in references [1, 2]. Modal amplitudes in the present discussion are

in terms of acoustic potential duct modes, because the acoustic "eld equations are naturally
in terms of acoustic potential. Equivalent results are obtained in references [1, 2] for
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acoustic pressure modal amplitudes and it is only necessary at this point to refer to the
properties of the acoustic potential scattering matrices.

The reverse #ow reciprocity principle is

[S
1
]T [J] [a]"[J] [a] [S

2
] (3)

or

[J] [a] [S
1
]"([J] [a] [S

2
])T. (4)

The diagonal matrices [J] and [a] are scaling matrices which have elements depending on
the mode considered. The evaluation of these matrices is covered in detail in reference [1].

Equations (3) and (4) show that a weighted version of the nominal #ow acoustic potential
scattering matrix and similarly weighted version of the reversed #ow acoustic potential
scattering matrix are transposes of one another. In terms of the acoustic potential re#ection
and transmission coe$cient matrices the result is

[R
1
]T [J

0
] [a

0
]"[J

0
] [a

0
] [R

2
], [RI

1
]T [J

L
] [a

L
]"[J

L
] [a

L
] [RI

2
], (5, 6)

[¹
1
]T [J

L
] [a

L
]"[J

0
] [a

0
] [¹I

2
], [¹3

1
]T [J

0
] [a

0
]"[J

L
] [a

L
] [¹

2
]. (7, 8)

Subscripts 0 and ¸ refer to the evaluation of the relevant scaling coe$cients at the two ends
x"0 and ¸. The reciprocal relationships of equations (5)}(8) involve acoustic potential
re#ection and transmission coe$cient matrices, with diagonal elements representing
re#ection and transmission coe$cients in the incident modes (here referred to as direct
re#ection or transmission) and o!-diagonal re#ection and transmission coe$cients from the
incident mode to another mode. Equations (5) and (6) show that direct acoustic potential
re#ection coe$cients are invariant in reversed #ow. The transmission coe$cient matrix
pairs [¹

1
], [¹

2
] and [¹I

1
], [¹I

2
] are not reciprocally related but the pairs [¹

1
], [¹I

2
] and

[¹I
1
], [¹

2
] are related by equations (7) and (8). The notation convention uses the subscripts

1 and 2 to denote #ow direction (1 being nominal, 2 being reversed). Tilde, or lack thereof
denotes source location (tilde denoting source location reversal).

In the one-dimensional approximation [1] the same reciprocal relations apply, but in
a simpli"ed form. Re#ection coe$cients in nominal and reversed #ow are invariant:

R
1
"R

2
, RI

1
"RI

2
. (9, 10)

Scaled transmission coe$cients are invariant to simultaneous #ow reversal and source
plane reversal:
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cr
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cr
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. (11, 12)

In the case of one-dimensional propagation, there are additional results which can be
deduced based on reciprocity and energy conservation. Power transmission coe$cients ¹n
are de"ned as the ratio of transmitted power to incident power. It is found that

¹n
1
"¹n

2
"¹I n

1
"¹I n

2
. (13)

Here, as in the previous discussion, the subscripts 1 and 2 refer to #ow direction and the
tilde or lack thereof refers to source location. Power transmission coe$cients are invariant
to #ow reversal and source location reversal. That is, the power transmission coe$cient is
the same for #ow in either direction, for a source at either end of the duct. Power re#ection
coe$cients Rn are de"ned as the ratio of re#ected power to incident power. It is also
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found that

Rn
1
"Rn

2
"RI n

1
"RI n

2
. (14)

Power re#ection coe$cients are invariant to #ow reversal and source location reversal.
The results summarized by equations (5)}(14) are interesting theoretically and also

provide useful benchmarks which can be used to validate propagation calculations. In the
following sections two "nite element codes for duct propagation, one multi-modal and the
other one-dimensional, are used to demonstrate several of these reciprocal relations.

2. ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

Reciprocity relations previously described will be veri"ed by computations based on two
FEM codes for duct propagation, one for multi-modal propagation and the other
specialized for one-dimensional propagation. In this section, only a brief description of the
multi-modal propagation code will be given. Details of the FEM modelling approach can
be found in references [7, 8].

A formulation in terms of acoustic potential is used to produce a weak formulation
suitable for "nite element discretization to reduce the "eld equations to a single scalar
variable. The geometry of the duct in Figure 1, and the steady #ow "eld is axially symmetric.
The acoustic "eld is not axially symmetric but is represented as azimuthally periodic in
a cylindrical co-ordinate system with x being the axis of symmetry, r the cylindrical radius
in a circular cross-section at x"0, and h the angular co-ordinate. Solutions are sought in
angular harmonics of a Fourier Series in h enumerated by the angular mode number m. This
reduces the solution domain to a two-dimensional x, r plane, shown in Figure 1. The duct
shape in a h"constant plane shows the surface S which de"nes the duct shape and could
include an inner surface for an annular duct. Part of S includes S

w
, which is a locally reacting

acoustic treatment.
The acoustic "eld is assumed to be harmonic in time at non-dimensional frequency g

r
.

Geometry is non-dimensional based on a reference length generally chosen as the radius of
the inlet at the source plane, R. Acoustic and steady #ow variables are non-dimensional
based on reference values of the speed of sound and density of the medium, o

=
, c

=
, generally

de"ned at the plane of the acoustic source. The non-dimensional frequency is g
r
"uR/c

=
,

with u the harmonic source frequency.
Field equations for continuity and momentum and the isentropic equation of state are

used in a weighted residual statement to obtain an integral formulation which is then
written in discrete form using standard FEM procedures. In terms of acoustic potential, the
weak formulation is
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where the local non-dimensional steady #ow velocity is V
r
"+/

r
, with /

r
the

non-dimensional steady #ow velocity potential. The local non-dimensional density and
speed of sound are o

r
, c

r
. The surface integral on the right-hand side introduces the noise

source and termination conditions on S
0

or S
L

and a possible impedance boundary
condition on S inside the duct. In the present investigation, it is the impedance boundary
condition which is of interest on S

w
, a portion of S. In equation (15), the weighted residuals
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statement, =, represents an arbitrary weighting function selected from the class of
continuous functions. In this weak formulation the approximation to the solution / is also
chosen from the class of continuous functions.

At a duct wall the mean #ow is tangential to the wall and V
r
) n"0 causing the boundary

integral (the contribution to the right-hand side of equation (1) related to the impedance
condition) to become

I
b
"PS

w
Po

r
=+/ ) n dS. (16)

It is shown in reference [9] that at a wall of admittance A, the weighted residual boundary
integral of equation (16) on the duct surface S

w
, derived from the Myers boundary condition

[7], is
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An accurate representation of this impedance boundary condition is essential to obtaining
veri"cation of reciprocal relationships when acoustic treatment is inserted into the duct wall
[9]. References [7, 8] deal with propagation and radiation to the far "eld from open-ended
ducts. In the code described here, rather than model radiation to the far "eld from the open
end, non-re#ecting boundary conditions are imposed at the termination. The boundary
integral of equation (15) is used to introduce the source (at either end of the duct) as
a superposition of acoustic potential duct modes and to implement the non-re#ecting
boundary condition based on another superposition of duct modes. The one-dimensional
code is based on the one-dimensional "eld equations [1], and therefore has no provision for
acoustic treatment. Other details of this code are similar to the multi-modal code. In both
cases, the steady mean #ow "eld which is the required data for propagation calculations is
provided by an FEM potential #ow code which introduces compressibility by iteration of
successive incompressible #ow problems. Steady #ow is produced on the acoustic FEM
mesh for convenience of data transfer.

The FEM codes provide solutions for the acoustic potential "eld which is post-processed
to obtain acoustic pressure. Included as part of the solution are the acoustic potential modal
amplitudes a`, a~, b`, b~. These are also converted to acoustic pressure modal amplitudes.
Additional post-processing produces computations of acoustic power and power re#ection
and transmission coe$cients.

3. NUMERICAL EXPERIMENTS ON RECIPROCITY

The "rst numerical veri"cation of the reciprocal characteristics of the scattering matrix
for an axially symmetric duct has been carried out in the case of a duct with a transition
from annular to circular, as shown in an x, r slice in Figure 2. The interior contour is that of
a typical turbofan inlet and the uniform extensions are added to meet the requirements of
the present analysis (uniform #ow and proper de"nition of acoustic eigenfunctions). The
"nite element mesh used in the computations is shown in this "gure and is typical for
examples cited here. The conditions for the &&nominal'' case are standard atmospheric
conditions at the source plane (x"0), Mach number at the source plane M

0
"0)27,

directed left to right (opposite to the direction in an inlet). The non-dimensional frequency
(based on the source plane) is g

r
"10. In the nominal case, the input plane for scattering is

the source plane at x"0. Figure 3 shows isopotential contours for the steady compressible
#ow in the duct which varies roughly between M"0)27 and 0)15. Figure 3 is unaltered in



Figure 2. Plane section through the axis of a duct which has a transition from annular to circular, showing the
duct pro"le and a typical "nite element mesh.

Figure 3. Iso-potential contours for steady #ow through the annular/circular duct.
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form for reverse #ow (right to left and in the direction expected in an inlet). The acoustic
analysis is based on input modes with angular dependence m"3, for which there exist two
propagating modes at each end of the duct (n"1, 2). The third mode, n"3, is cut o! at
both ends of the duct with cut-o! ratio m"0)87 at x"0 and 0)84 at x"¸. Two cases of
duct wall characteristics are studied. In the "rst case, the duct walls are acoustically hard,
that is the impedance is in"nite and the admittance vanishes. In the second case, the outer
duct wall is acoustically treated from x"1)0 through 80% of the non-uniform section. The
impedance is chosen as Z"2)0}1)0i, which is not optimum for attenuation for the given
conditions, but is not untypical for aircraft applications. The acoustic power attenuation
with the simplest radial mode incident (m"3, n"1) is about 9 dB, so there is a signi"cant
decrease in acoustic power from one end of the duct to the other, attributable to the wall
treatment.

To generate the scaled re#ection and transmission coe$cient matrices in this case, input
modes n"1, 2 and 3 are considered. This produces 3]3 matrices which include two
propagating modes and one mode which is cut o! at both ends. To build the re#ection and
transmission matrices to verify equations (5) and (7), it is required to consider nine
propagation cases: three input modes at x"0 for nominal #ow; three input modes at x"0
for reverse #ow; and three input modes at x"¸ for reverse #ow.

Reference to contours of equal acoustic pressure provide evidence of the di!erences
induced by varying the source mode number, source location and the #ow direction.
Figure 4 shows acoustic iso-pressure contours for the duct with acoustic treatment when the
input radial mode at x"0 is n"1. There is signi"cant scattering and this is veri"ed by
reference to the scattering coe$cients. Figure 5 shows the case of a mode n"3 input at
x"¸ in reverse #ow. This mode is cut o! at both ends, and it should be noted how rapidly
the acoustic pressure level is attenuated away from the source plane.



Figure 4. Acoustic iso-pressure contours for acoustically treated annular/circular duct with nominal #ow. At
x"0 the Mach number is M

0
"0)27, the non-dimensional frequency is g

r
"10)0, and the input mode on the left is

m"3, n"1. Contours are typical for a well cut on input mode.

Figure 5. Acoustic iso-pressure contours for acoustically treated annular/circular duct with reverse #ow. At
x"0 the Mach number is M

0
"!0)27, the non-dimensional frequency is g

r
"10)0, and the input mode on the

right is m"3, n"3. Contours are typical for a moderately cut o! input mode.
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Table 1 shows the scaled acoustic potential re#ection coe$cient matrix in nominal
#ow with the scattering plane (acoustic source plane) at x"0, which corresponds to the
left-hand side of equation (5). Table 2 is the re#ection matrix at x"0 in reversed #ow,
corresponding to the right-hand side of equation (5). Equation (5) predicts that these



TABLE 1

Scaled acoustic potential re-ection coe.cients for nominal -ow and source at x"0 for the
transition from an annular to circular hard wall duct which corresponds to the left-hand side of

equation (5). g
r
"10, m"3

Mode 1 2 3

1 !0)14380!0)03098 i !0)13986#0)07217 i !0)153(!4)!0)549(!5) i
2 !0)13746#0)71323 i !0)04113#0)20572 i 0)104(!3)#0)732(!5) i
3 !0)424(!5)#0)841(!5) i !0)144(!4)!0)903(!4) i !0)682(!5)#0)497(!8) i

TABLE 2

Scaled acoustic potential re-ection coe.cients for reverse -ow and source at x"0 for the
transition from an annular to circular hard wall duct which corresponds to the right-hand side

of equation (5). g
r
"10, m"3

Mode 1 2 3

1 !0)14380!0)03098 i !0)13746#0)71323 i !0)424(!5)#0)841(!5) i
2 !0)13986#0)07217 i !0)04113#0)20572 i !0)144(!4)!0)903(!8) i
3 !0)153(!4)!0)549(!5) i !0)104(!3)#0)732(!5) i !0)682(!5)#0)497(!8) i

TABLE 3

Scaled acoustic potential transmission coe.cients for nominal -ow and source at x"0 for the
transition from an annular to circular hard wall duct which corresponds to the left-hand side of

equation (7). g
r
"10, m"3

Mode 1 2 3

1 !4)12246#0)00532 i !0)56880#0)23281 i 0)151(!4)!0)109(!4) i
2 0)58902#0)37376 i !1)74565!0)27580 i 0)834(!4)#0)174(!4) i
3 0)300(!4)!0)897(!4) i !0)169(!3)#0)105(!3) i 0)808(!8)!0)488(!8) i

TABLE 4

Scaled acoustic potential transmission coe.cients for reverse -ow and source at x"¸ for the
transition from an annular to circular duct which corresponds to the right-hand side of

equation (7). g
r
"10, m"3

Mode 1 2 3

1 !4)12246#0)00532 i 0)58902#0)37376 i !0)300(!4)!0)897(!4) i
2 !0)56880#0)23821 i !1)74565!0)27580 i !0)169(!3)!0)105(!3) i
3 0)151(!4)!0)109(!4) i 0)834(!4)#0)174(!4) i 0)808(!8)!0)488(!8) i

104 W. EVERSMAN



TABLE 5

Scaled acoustic potential re-ection coe.cients for direct -ow and source at x"0 for the
transition from an annular to circular acoustically treated duct which corresponds to the

left-hand side of equation (5). g
r
"10, m"3

Mode 1 2 3

1 0)16904!0)23900 i !0)12975!0)18014 i !0)482(!3)!0)677(!4) i
2 !0)07368!0)10133 i !0)00984!0)03495 i !0)275(!3)#0)950(!4) i
3 !0)305(!3)#0)632(!5) i !0)283(!3)#0)556(!5) i !0)693(!5)#0)510(!6) i

TABLE 6

Scaled acoustic potential re-ection coe.cients for reverse -ow and source at x"0 for the
transition from an annular to circular acoustically treated duct which corresponds to the

right-hand side of equation (5). g
r
"10, m"3

Mode 1 2 3

1 0)16904!0)23900 i !0)07368!0)10133 i !0)305(!3)#0)632(!5) i
2 !0)12975!0)18014 i !0)00984!0)03495 i !0)283(!3)#0)556(!5) i
3 !0)482(!3)!0)677(!4) i !0)275(!3)#0)950(!4) i !0)693(!5)#0)510(!6) i

TABLE 7

Scaled acoustic potential transmission coe.cients for direct -ow and source at x"0 for the
transition from an annular to circular acoustically treated duct which corresponds to the

left-hand side of equation (7). g
r
"10, m"3

Mode 1 2 3

1 !1)21549#0)02495 i !0)25788#0)60030 i 0)780(!4)!0)227(!3) i
2 0)38577!0)37557 i !0)76395#0)24663 i 0)146(!3)!0)741(!4) i
3 !0)319(!4)!0)753(!4) i !0)532(!4)#0)849(!4) i 0)109(!7)!0)205(!7) i

TABLE 8

Scaled acoustic potential transmission coe.cients for reverse -ow and source at x"¸ for the
transition from an annular to circular acoustically treated duct which corresponds to the

left-hand side of equation (7). g
r
"10, m"3

Mode 1 2 3

1 !1)21549#0)02495 i 0)38577!0)37557 i !0)319(!4)!0)753(!4) i
2 !0)25788#0)60030 i !0)76395#0)24663 i !0)532(!4)#0)849(!4) i
3 0)780(!4)!0)227(!3) i 0)146(!3)!0)741(!4) i 0)109(!7)!0)205(!7) i

NUMERICAL EXPERIMENTS ON RECIPROCITY 105
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matrices should be reciprocals of one another. Tables 1 and 2 verify this with exceptional
accuracy.

Tables 3 and 4 verify the prediction of equation (7). Table 3 gives the scaled acoustic
potential transmission coe$cients in nominal #ow with the source at x"0. Table 4 gives
the scaled transmission coe$cients in reversed #ow with the source shifted to x"¸.
Equation (7) predicts a reciprocal relationship which is accurately substantiated in Tables
3 and 4. A point of interest in the results shown in Tables 1}4 is that reciprocity extends to
cut-o! modes in which case the power transmission is only accounted for by interaction of
left and right modes.

Tables 5}8 are for the case with acoustic treatment in place. Table 5 shows the scaled
acoustic potential re#ection coe$cient matrix in nominal #ow with the scattering plane
(acoustic source plane) at x"0, and with the non-uniform portion of the duct outer wall
acoustically treated. This corresponds to the left-hand side of equation (5). Table 6 is the
re#ection matrix at x"0 in reversed #ow, corresponding to the right-hand side of equation
(5) for the same acoustic treatment con"guration. Equation (5) predicts that these matrices
should be reciprocals of one another. Tables 5 and 6 verify this, again with exceptional
accuracy.

Tables 7 and 8 verify the prediction of equation (7) in the case of an acoustically treated
outer wall. Table 7 gives the scaled acoustic potential transmission coe$cients in direct #ow
with the source at x"0. Table 8 gives the scaled transmission coe$cients in reversed #ow
with the source shifted to x"¸. Equation (7) predicts a reciprocal relationship which is
accurately substantiated in Tables 7 and 8. Again, the applicability of the reciprocity
principle to cut-o! modes is veri"ed.

The next case considered involves a steady #ow in which the Mach number becomes
relatively high, emphasizing the dependence of the acoustic treatment boundary condition
on Mach number. An additional complication introduced here is the segmenting of the
acoustic treatment into two equal length parts with di!erent impedances, spanning the
entire transition section. A continuous transition occurs within one element of the FEM
mesh. The impedances in this case are Z

1
"2)0}1)0 i and Z

2
"3)0}2)0 i (numbered left to

right). This satis"es the requirement of the reciprocity theorem and also simulates a near
discontinuity of impedance. Here, a converging duct with a contraction ratio of p"0)5, as
shown in Figure 6, accelerates the #ow (iso-potential contours are shown in Figure 6)
from a Mach number at the nominal source plane of M"0)13 to M"0)71 at the exit
plane. An acoustic propagation analysis has been carried out for the non-dimensional
frequency g

r
"10 for a source with angular mode m"3. In this geometry, and the resulting

steady #ow there are two propagating modes at x"0 (determined in the hard wall case),
but just one propagating mode at x"¸. Results for scaled potential re#ection and
Figure 6. Duct shape and iso-potential contours for steady #ow through the converging circular duct.



Figure 7. Acoustic iso-pressure contours for acoustically treated converging circular duct with nominal #ow. At
x"0 the Mach number is M

0
"!0)13 and at x"¸ the Mach number is M

L
"!0)71. The non-dimensional

frequency is g
r
"10)0, and the input mode on the left is m"3, n"1. Contours are typical for a well cut on input

mode.
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transmission matrices are given here. 3]3 re#ection and transmission matrices are
investigated by considering input radial modes n"1, 2, and 3. At x"0 the two
propagating modes and one cut-o! mode have cut-o! ratios m"2)40, 1)26, 0)89
respectively. At x"¸, the single propagating mode and two cut-o! modes have cut-o!
ratios m"1)65, 0)87, 0)61. An interesting feature of this geometry and #ow is that mode
n"2 makes a transition from cut on to cut o! in going from left to right. Mode n"3 is
deeply cut o! at x"¸.

Figure 7 shows acoustic iso-pressure contours for the case of nominal #ow (left to right)
with the mode n"1 input at x"0. The contours are consistent with a well cut on mode
and signi"cant scattering. Figure 8 shows contours for the case of reverse #ow (right to left)
with the source at the end x"¸, and the input mode n"3. This mode is deeply cut o! and
it should be noted how rapidly the acoustic pressure levels decay away from the source
plane. It can be concluded that this mode e!ectively produces no acoustic pressure at x"0.

Tables 9}12 are presented to verify the predicted reciprocal characteristics of the
scaled acoustic potential re#ection and transmission coe$cients. Tables 9 and 10 show the
scaled pressure re#ection coe$cients for nominal #ow (left to right) and reverse #ow (right
to left) with the source at x"0. These correspond with the left- and right-hand sides of
equation (5). The re#ection matrices shown in these two tables are seen to be reciprocals, as
predicted.

Tables 11 and 12 show the scaled potential transmission coe$cients for nominal #ow (left
to right) with the source plane at x"0 and reverse #ow (right to left) with the source at
x"¸. These correspond with the left- and right-hand sides of equation (7). The re#ection
matrices shown in these two tables are seen to be reciprocals for modes n"1, 2. Reciprocity
involving mode n"3 seems to fail. The reason for this can be deduced by referring back to
Figure 8 and noting that the deeply cut-o! mode n"3 creates acoustic pressure levels at
x"0 which are probably unresolvable with accuracy by the numerical model. To test this



Figure 8. Acoustic iso-pressure contours for acoustically treated converging circular duct with reverse #ow. At
x"0 the Mach number is M

0
"!0)13 and at x"¸ the Mach number is M

L
"!0)71. The non-dimensional

frequency is g
r
"10)0, and the input mode on the right is m"3, n"3. Contours are typical for a deeply cut o!

input mode.

TABLE 9

Scaled acoustic potential refelection coe.cients for direct -ow and source at x"0 for the
converging circular acoustically treated duct which corresponds to the left-hand side of

equation (5). g
r
"10, m"3

Mode 1 2 3

1 0)16566#0)11529 i 0)23310#0)05472 i !0)00056!0)00099 i
2 0)20720#0)09263 i !0)02814#0)01965 i 0)00035!0)00035 i
3 !0)00044!0)00067 i !0)00069!0)00111 i !0)291(!4)#0)286(!5) i

TABLE 10

Scaled acoustic potential re-ection coe.cients for reverse -ow and source at x"0 for the
converging circular acoustically treated duct which corresponds to the right-hand side of

equation (5). g
r
"10, m"3

Mode 1 2 3

1 0)16566#0)11529 i 0)20720#0)09623 i !0)00044!0)00067 i
2 0)23310#0)05472 i !0)02814#0)01965 i !0)00069!0)00111 i
3 !0)00056!0)00099 i 0)00035!0)00035 i !0)291(!4)#0)286(!5) i
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TABLE 11

Scaled acoustic potential transmission coe.cients for direct -ow and source at x"0 for the
converging circular acoustically treated duct which corresponds to the left-hand side of

equation (7). g
r
"10, m"3

Mode 1 2 3

1 !0)18538#0)24017 i 0)04016#0)13443 i !0)223(!5)!0)286(!6) i
2 0)374(!4)!0)570(!4) i !0)115(!4)!0)288(!4) i 0)110(!8)!0)344(!8) i
3 !0)521(!7)#0)116(!6) i 0)301(!7)!0)507(!7) i 0)260(!11)#0)595(!11) i

TABLE 12

Scaled acoustic potential transmission coe.cients for reverse -ow and source at x"¸ for the
converging circular acoustically treated duct which corresponds to the left-hand side of

equation (7). g
r
"10, m"3

Mode 1 2 3

1 !0)18538#0)24017 i 0)374(!4)!0)570(!4) i !0)521(!7)#0)116(!6) i
2 0)04016#0)13443 i !0)115(!4)!0)288(!4) i 0)301(!7)#0)507(!7) i
3 0)00014!0)00005 i 0)332(!7)#0)961(!8) i !0)644(!10)!0)770(!11) i
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hypothesis, another test of reciprocity with the same geometry, #ow, and mode number was
carried out, but with the non-dimensional frequency increased to g

r
"12 (from g

r
"10).

This changes the cut-o! ratios for the modes n"1, 2, 3 to m"2)88, 1)51, 1)07 at x"0 and
m"1)98, 1)04, 0)73 at x"¸. This makes three propagating modes at the left end and two
propagating modes at the right end, and retains the interesting feature of the transition from
cut on to cut o! for mode n"3 in a transition from left to right, or from cut o! to cut on in
the opposite direction.

Figure 9 shows acoustic iso-pressure contours for the case of reverse #ow, with the source
at the right end with n"3 and g

r
"12. The contour levels show that at the left end the

acoustic pressure levels are substantially higher than those shown in Figure 8, and they are
more accurately resolved by the modelling scheme.

Tables 13 and 14 show the scaled potential transmission coe$cients for nominal #ow
(left to right) with the source plane at x"0 and reverse #ow (right to left) with the source
at x"¸. The non-dimensional frequency is g

r
"12. Now reciprocity is satis"ed (a

reciprocal relationship of the scaled transmission matrices) to a high level of accuracy. It is
concluded that the problem encountered at non-dimensional frequency g

r
"10 is caused by

the lack of accurate resolution of the acoustic "eld of the deeply cut-o! mode n"3. This
warns that there is a practical limit beyond which reciprocity may not be veri"able for
cut-o! modes.

A "nal example considers the converging circular duct pro"le previously shown in
Figure 6 with the same steady #ow Mach number, but in this case treated as one
dimensional. Inlet and exit Mach numbers for the nominal #ow are M"0)13 and 0)71.
Acoustic propagation is also taken to be one dimensional at non-dimensional frequency
g
r
"1)0 based on a reference length which is the radius (of an assumed circular cross

section) of the duct at the nominal source plane x"0. This scaling makes everything



Figure 9. Acoustic iso-pressure contours for acoustically treated converging circular duct with reverse #ow. At
x"0 the Mach number is M

0
"!0)13, and at x"¸ the Mach number is M

L
"!0)71. The non-dimensional

frequency is g
r
"12)0, and the input model on the right is m"3, n"3. Contours are typical for a moderately cut

o! input mode.

TABLE 13

Scaled acoustic potential transmission coe.cients for direct -ow and source at x"0 for the
converging circular acoustically treated duct which corresponds to the left-hand side of

equation (7). g
r
"12, m"3

Mode 1 2 3

1 !0)08862#0)41280 i 0)31074!0)05362 i 0)03674#0)06580 i
2 !0)02353!0)00062 i 0)02811!0)03804 i 0)00839!0)00304 i
3 0)877(!5)!0)791(!5) i 0)0255(!5)#0)237(!4) i !0)208(!5)#0)397(!5) i

TABLE 14

Scaled acoustic potential transmission coe.cients for reverse -ow and source at x"¸ for the
converging circular acoustically treated duct which corresponds to the left-hand side of

equation (7). g
r
"12, m"3

Mode 1 2 3

1 !0)08862#0)41280 i !0)02353!0)00062 i 0)877(!5)!0)791(!5) i
2 0)31074!0)05362 i 0)02811!0)03804 i 0)255(!5)#0)237(!4) i
3 0)03674#0)06580 i 0)00839!0)00304 i !0)208(!5)#0)397(!5) i
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Figure 10. Acoustic iso-pressure contours for converging circular duct with nominal #ow. At x"0 the Mach
number is M

0
"0)13, and at x"¸ the Mach number is M

L
"0)71. The non-dimensional frequency is g

r
"1)0.

The source is on the left and is input as m"0, n"1. This simulates and compares with one-dimensional
propagation.
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consistent with the axially symmetric duct formulation. Propagation at the chosen
frequency has been modelled by the axially symmetric formulation using angular mode
m"0 and radial mode n"1. Iso-potential contours for the steady #ow are shown in
Figure 6 and iso-acoustic pressure contours are shown in Figure 10 (with longer uniform
extensions at the two ends, as compared to Figure 6). Due to the duct contour and steady
#ow, there is noticeable deviation from true one-dimensional propagation, however, there is
no indication of substantial scattering into higher order modes, which the one-dimensional
theory necessarily excludes.

Table 15 is a summary of the reciprocity and power invariance benchmark tests which are
available in the one-dimensional case. The results of (a) and (b) substantiate the reciprocity
statement of equation (9) and the results of (c) and (d) substantiate the reciprocity statement
of equation (11). The power results (e)}(l) substantiate the observations based on power
considerations that power re#ection and transmission coe$cients are independent of #ow
direction and source location (equations (13) and (14)). As an indication of the comparison
between the axially symmetric (3-D) duct model and the one-dimensional model, power
re#ection and transmission coe$cients for the axially symmetric model are also shown. The
invariance of the power transmission and re#ection coe$cients to #ow direction and source
location is true (numerically) at low frequencies in the axially symmetric duct and the
one-dimensional predictions of re#ection and transmission characteristics quite favorably
correlate with predictions of the axially symmetric model. The properties of invariance of
the power re#ection and transmission coe$cients is not generally true at higher frequencies
in the axially symmetric model when scattering into higher or lower modes occurs.

4. CONCLUSION

Numerical veri"cation of the reciprocal relationships derived in reference [1] has
been accomplished using a "nite element model for duct propagation. Three cases have
been presented for an axially symmetric duct model, one introducing the feature of
transition from an annular to a circular duct without and with acoustic treatment, and the
second introducing a converging duct with substantial steady #ow acceleration and



TABLE 15

Summary of scattering matrix reciprocity and power invariance benchmark tests for
a one-dimensional converging duct, with power invariacne comparisons for an axially
symmetric model. M

0
"0)13, M

L
"0)71, g

r
"1)0 (m"0, n"1 in the axially symmetric case)

Coe$cient 3-D 1-D 1-D

(a) Re#ection coe$cient, direct #ow, source 0)430129#0)050053 i
left

(b) Re#ection coe$cients, reverse #ow, 0)430129#0)050053 i
source left

(c) Scaled transmission coe$cient, 0)384607#0)145370 i
direct #ow, source left

(d) Scaled transmission coe$cient, 0)384607#0)145370 i
reverse #ow, source left

(e) Power re#ection coe$cient, 0)171105 0)187517
direct #ow, source left:

(f ) Power re#ection coe$cient, 0)171105 0)187517
reverse #ow, source left

(g) Power re#ection coe$cient, 0)171105 0)187517
direct #ow, source right

(h) Power re#ection coe$cient, 0)171105 0)187517
reverse #ow, source right

(i) Power transmission coe$cient, direct 0)828895 0)812483
#ow, source left

( j) Power transmission coe$cient, reverse 0)828895 0)812483
#ow, source left

(k) Power transmission coe$cient, direct 0)828895 0)812483
#ow, source right

(l) Power transmission coe$cient, reverse 0)828895 0)812483
#ow, source right
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segmented acoustic treatment. A fourth case is presented for the converging duct at
low frequency where a one-dimensional model of propagation is appropriate. Reciprocal
characteristics of the scattering matrices are veri"ed with exceptional accuracy, as are
predicted relationships for power re#ection and transmission coe$cients in the
one-dimensional case.
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